Manual Supplement

Manual Title:	5520A Operators	Supplement Issue:	3
Print Date:	August 1998	Issue Date:	1/07
Revision/Date:	$6,1 / 03$	Page Count:	4

This supplement contains information necessary to ensure the accuracy of the above manual. This manual is distributed as an electronic manual on the following CD-ROM:

CD Title:	$5500 A / 5520 \mathrm{~A}$
CD Rev. \& Date:	$2,6 / 2006$
CD PN:	1627768

Change \#1

Replace page 1-12, 1-15. DC Current Specifications, with the following:

1-15. DC Current Specifications

Range	$\begin{aligned} & \text { Absolute Uncertainty, } \\ & \text { tcal } \pm 5^{\circ} \mathrm{C} \\ & \pm(\mathrm{ppm} \text { of output }+\mu \mathrm{A}) \\ & \hline \end{aligned}$		Resolution	Max Compliance Voltage V	Max Inductive Load mH
	90 days	1 year			
0 to 329.999 mA	$120+0.02$	$150+0.02$	1 nA	10	
0 to 3.29999 mA	$80+0.05$	$100+0.05$	0.01 mA	10	
0 to 32.9999 mA	$80+0.25$	$100+0.25$	0.1 mA	7	
0 to 329.999 mA	$80+2.5$	$100+2.5$	1 mA	7	400
0 to 1.09999 A	$160+40$	$200+40$	10 mA	6	
1.1 to 2.99999 A	$300+40$	$380+40$	10 mA	6	
0 to 10.9999 A (20 A Range)	$380+500$	$500+500$	100 mA	4	
11 to 20.5 A [1]	$800+750$ [2]	$1000+750$ [2]	100 mA	4	

[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1-4. The current may be provided 60-T-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal selfheating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure $1-4$ is achieved only after the 5520A is outputting currents $<5 A$ for the "off" period first.
[2] Specifications apply within two minutes of selecting operate.

Range	Noise	
	Bandwidth $\mathbf{0 . 1 ~ H z ~ t o ~} \mathbf{1 0 ~ H z ~ p - p ~}$	Bandwidth $\mathbf{1 0 ~ H z ~ t o ~ 1 0 ~ k H z ~ r m s ~}$
0 to $329.999 \mu \mathrm{~A}$	2 nA	20 nA
0 to 3.29999 mA	20 nA	200 nA
0 to 32.9999 mA	200 nA	$2.0 \mu \mathrm{~A}$
0 to 329.999 mA	2000 nA	$20 \mu \mathrm{~A}$
0 to 2.99999 A	$20 \mu \mathrm{~A}$	1 mA
0 to 20.5 A	$200 \mu \mathrm{~A}$	10 mA

Replace page 1-17, 1-18. AC Current (Sine Wave) Specifications with the following:

1-1. AC Current (Sine Wave) Specifications

LCOMP off						
Range	Frequency	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$ \pm (\% of output $+\mu \mathrm{A}$)		$\begin{gathered} \text { Compliance } \\ \text { adder } \\ \pm(\mu \mathrm{A} / \mathrm{V}) \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { Distortion \& } \\ \text { Noise } 10 \mathrm{~Hz} \\ \text { to } 100 \mathrm{kHz} \\ \mathrm{BW} \\ \pm \text { (\% output } \\ + \\ \text { floor) } \\ \hline \end{gathered}$	Max Inductive Load $\mu \mathrm{H}$
		90 days	1 year			
$\begin{aligned} & 29.00 \mu \mathrm{~A} \text { to } \\ & 329.99 \mu \mathrm{~A} \end{aligned}$	10 Hz to 20 Hz	$0.16+0.1$	$0.2+0.1$	0.05	$0.15+0.5 \mu \mathrm{~A}$	200
	20 Hz to 45 Hz	$0.12+0.1$	$0.15+0.1$	0.05	$0.1+0.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.1+0.1$	$0.125+0.1$	0.05	$0.05+0.5 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.25+0.15$	$0.3+0.15$	1.5	$0.5+0.5 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.6+0.2$	$0.8+0.2$	1.5	$1.0+0.5 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$1.2+0.4$	$1.6+0.4$	10	$1.2+0.5 \mu \mathrm{~A}$	
$\begin{aligned} & 0.33 \mathrm{~mA} \text { to } \\ & 3.2999 \mathrm{~mA} \end{aligned}$	10 Hz to 20 Hz	$0.16+0.15$	$0.2+0.15$	0.05	$0.15+1.5 \mu \mathrm{~A}$	200
	20 Hz to 45 Hz	$0.1+0.15$	$0.125+0.15$	0.05	$0.06+1.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.08+0.15$	$0.1+0.15$	0.05	$0.02+1.5 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.16+0.2$	$0.2+0.2$	1.5	$0.5+1.5 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.4+0.3$	$0.5+0.3$	1.5	$1.0+1.5 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$0.8+0.6$	$1.0+0.6$	10	$1.2+0.5 \mu \mathrm{~A}$	
$\begin{aligned} & 3.3 \mathrm{~mA} \text { to } \\ & 32.999 \mathrm{~mA} \end{aligned}$	10 Hz to 20 Hz	$0.15+2$	$0.18+2$	0.05	$0.15+5 \mu \mathrm{~A}$	50
	20 Hz to 45 Hz	$0.075+2$	$0.09+2$	0.05	$0.05+5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+2$	$0.04+2$	0.05	$0.07+5 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.065+2$	0.08+2	1.5	$0.3+5 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.16+3$	$0.2+3$	1.5	$0.7+5 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$0.32+4$	$0.4+4$	10	$1.0+0.5 \mu \mathrm{~A}$	
$\begin{aligned} & \hline 33 \mathrm{~mA} \text { to } \\ & 329.99 \mathrm{~mA} \end{aligned}$	10 Hz to 20 Hz	$0.15+20$	$0.18+20$	0.05	$0.15+50 \mu \mathrm{~A}$	50
	20 Hz to 45 Hz	$0.075+20$	$0.09+20$	0.05	$0.05+50 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+20$	$0.04+20$	0.05	$0.02+50 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.08+50$	$0.10+50$	1.5	$0.03+50 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.16+100$	$0.2+100$	1.5	$0.1+50 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$0.32+200$	$0.4+200$	10	$0.6+50 \mu \mathrm{~A}$	
$\begin{aligned} & \hline 0.33 \mathrm{~A} \text { to } \\ & 1.09999 \mathrm{~A} \end{aligned}$	10 Hz to 45 Hz	$0.15+100$	$0.18+100$		$0.2+500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.036+100$	$0.05+100$		$0.07+500 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1+500 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2+500 \mu \mathrm{~A}$	
$\begin{aligned} & 1.1 \mathrm{~A} \text { to } \\ & 2.99999 \mathrm{~A} \end{aligned}$	10 Hz to 45 Hz	$0.15+100$	$0.18+100$		$0.2+500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.05+100$	$0.06+100$		$0.07+500 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1+500 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2+500 \mu \mathrm{~A}$	
$\begin{array}{\|l\|} \hline 3 \mathrm{~A} \text { to } \\ 10.9999 \mathrm{~A} \end{array}$	45 Hz to 100 Hz	$0.05+2000$	$0.06+2000$		$0.2+3 \mathrm{~mA}$	1
	100 kHz to 1 kHz	$0.08+2000$	$0.10+2000$		$0.1+3 \mathrm{~mA}$	
	1 kHz to 5 kHz	$2.5+2000$	$3.0+2000$		$0.8+3 \mathrm{~mA}$	
$\begin{array}{\|l\|} \hline 11 \mathrm{~A} \text { to } \\ 20.5 \mathrm{~A}[1] \end{array}$	45 Hz to 100 Hz	$0.1+5000$	$0.12+5000$		$0.2+3 \mathrm{~mA}$	1
	100 Hz to 1 kHz	$0.13+5000$	$0.15+5000$		$0.1+3 \mathrm{~mA}$	
	1 kHz to 5 kHz	$2.5+5000$	$3.0+5000$		$0.8+3 \mathrm{~mA}$	

[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents > 11 A , see Figure 1-4. The current may be provided $60-\mathrm{T}-\mathrm{I}$ minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1-4 is achieved only after the 5520A is outputting currents < 5A for the "off" period first.
[2] For compliance voltages greater than 1 V , add $1 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 1 kHz to 5 kHz .
[3] For compliance voltages greater than 1 V , add $5 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 5 kHz to 10 kHz .

Replace page 1-18, AC Current (Sine Wave) Specifications (cont), with the following: AC Current (Sine Wave) Specifications (cont)

LCOMP on					
Range	Frequency	$\begin{gathered} \text { Absolute Uncertainty, tcal } \pm 5 \\ \quad{ }^{\circ} \mathbf{C} \\ \pm(\% \text { of output }+\mu A) \end{gathered}$		Max Distortion \& Noise, 10 Hz to 100 kHz BW \pm (\% output + $\mu \mathrm{A})$	Max Inductive Load $\mu \mathrm{H}$
		90 days	1 year		
$\begin{aligned} & 29.00 \mu \mathrm{~A} \text { to } \\ & 329.99 \mu \mathrm{~A} \end{aligned}$	10 Hz to 100 Hz	$0.2+0.2$	$0.25+0.2$	$0.1+1.0$	400
	100 Hz to 1 kHz	$0.5+0.5$	$0.6+0.5$	$0.05+1.0$	
$\begin{aligned} & 0.33 \mathrm{~mA} \text { to } \\ & 3.2999 \mathrm{~mA} \end{aligned}$	10 Hz to 100 Hz	$0.2+0.3$	$0.25+0.3$	$0.15+1.5$	
	100 Hz to 1 kHz	$0.5+0.8$	$0.6+0.8$	$0.06+1.5$	
3.3 mA to$32.999 \mathrm{~mA}$	10 Hz to 100 Hz	$0.07+4$	$0.08+4$	$0.15+5$	
	100 Hz to 1 kHz	$0.18+10$	$0.2+10$	$0.05+5$	
33 mA to 329.99 mA	10 Hz to 100 Hz	$0.07+40$	$0.08+40$	$0.15+50$	
	100 Hz to 1 kHz	$0.18+100$	$0.2+100$	$0.05+50$	
$\begin{aligned} & 0.33 \text { A to } \\ & 2.99999 \text { A } \end{aligned}$	10 Hz to 100 Hz	$0.1+200$	$0.12+200$	$0.2+500$	
	100 to 440 Hz	$0.25+1000$	$0.3+1000$	$0.25+500$	
3 A to 20.5 A [1]	10 Hz to 100 Hz	$0.1+2000$ [2]	$0.12+2000$ [2]	$0.1+0$	400 [4]
	100 Hz to 1 kHz	$0.8+5000$ [3]	$1.0+5000[3]$	$0.5+0$	

[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents > 11 A, see Figure 1-4. The current may be provided 60 -T-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1-4 is achieved only after the 5520A is outputting currents < 5A for the "off" period first.
[2] For currents $>11 \mathrm{~A}$, Floor specification is $4000 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $2000 \mu \mathrm{~A}$.
[3] For currents $>11 \mathrm{~A}$, Floor specification is $1000 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $5000 \mu \mathrm{~A}$.
[4] Subject to compliance voltages limits.

Range	Resolution $\mu \mathbf{A}$	Max Compliance Voltage $\mathbf{V ~ r m s ~ [1] ~}$
0.029 mA to 0.32999 mA	0.01	7
0.33 mA to 3.29999 mA	0.01	7
3.3 mA to 32.9999 mA	0.1	5
33 mA to 329.999 mA	1	5
0.33 A to 2.99999 A	10	4
3 A to 20.5 A	100	3

[1] Subject to specification adder for compliance voltages greater than 1 V rms.

Change \#2, 39294

On page 1-21, under Temperature Calibration (RTD) Specifications, under RTD Type change:

From: Pt 395, 100Ω
To: Pt 385, 100Ω

Change \#3

On page 4-7, following the first sentence, add the following note:
Note
If the 5500 A is operated outside the range of $t_{\text {cal }} \pm 5^{\circ} \mathrm{C}$, then the temperature coefficient defined in the General Specifications, Chapter 1 of this manual, must be calculated and added to the absolute uncertainties. Zeroing the 5500A is still required

